
Further integration 2
Introducing an A-level Pure Mathematics textbook in the palm of your hand!
Alkalmazásinformáció
Alkalmazásleírás
Android Alkalmazás Elemzése És Áttekintése: Further integration 2, A Multimedia E-Learning Education System (MELES) Fejlesztése. Felsorolva A Oktatás Kategóriában. A Jelenlegi Verzió A 1.0, A 13/04/2020 -Es Frissítésű. A Felhasználói Vélemények Szerint A Google Play: Further integration 2. Több Mint 7 Telepítés. A Further integration 2 Jelenleg 1 -As Értékeléssel Rendelkezik, Az Átlagos Minősítés 5.0 Csillag
★ Study your Pure Mathematics on the go; bus, café, beach, street, anywhere!★ Simplified explanations, plus extra side notes with even more explanation!
★ Over 30 examples per chapter with step by step working.
★ Past paper examination questions at the end of each chapter.
★ Fully worked-out answers to every exercise per chapter (coming soon.. ).
✪ Check out our publication series here:
http://play.google.com/store/apps/dev?id=6466184711899020594
✪ Featured Pure Mathematics chapters:
1. Differentiation 1
2. Differentiation 2
3. Integration
4. Further differentiation
5. Algebra 1
6. Binomial theorem
7. Algebra 2
8. Series
9. Trigonometry 1
10. Trigonometry 2
11. Further Integration 1
12. Exponential and Log functions
13. Partial fractions
14. Further Integration 2
15. Coordinate geometry 1
16. Curve sketching
17. Coordinate geometry 2
18. Differential equations
19. Complex numbers
20. Vectors in 3-dimensions
✪ We've created an app for every Pure Maths chapter above.
✪ This app is for Chapter 14 referred to as FURTHER INTEGRATION 2.
Mi Az Új
Study Pure Math on your Phone, Tablet and even Smart TV:
✸ Integration by parts
✸ Integration by parts with limits
✸ Taking dv/dx as 1
✸ Integration by parts more than once
✸ Integration by parts where the original integral appears again
✸ Change of variable t = tan(ˣ/₂)
✸ Change of variable t = tan(x)
✸ Splitting the numerator
✸ Integration by parts
✸ Integration by parts with limits
✸ Taking dv/dx as 1
✸ Integration by parts more than once
✸ Integration by parts where the original integral appears again
✸ Change of variable t = tan(ˣ/₂)
✸ Change of variable t = tan(x)
✸ Splitting the numerator